Weathering Testing of Wood Coatings

Andy Francis

Bill Tobin

Dave Duecker

Sean Fowler

View Recorded Presentation

Q-Lab's New Webinar Series

Today is the first of two new webinars this fall from Q-Lab about specialty weathering testing

All upcoming and archived webinars can be accessed at:

q-lab.com/webinars

Date	Topic	
25 Sep	Weathering of wood coatings	
02 Oct	Weathering of photovoltaics	

Administrative Notes

You'll receive a follow-up email from info@email.q-lab.com with links to a survey, registration for future webinars, and to download the slides

Use the **Q&A feature in Zoom** to ask us questions today!

We make testing simple.

Thank you for attending our webinar!

We hope you found our webinar on *Weathering Testing of Wood Coatings* to be helpful and insightful. You can **download today's presentation** at any time - a link to the recording is included on the title slide. Subtitles can be accessed through YouTube for the video recording.

Agenda

- Natural Weathering
- Accelerated Lab Weathering
- Case Study Arwood study
- Correlation
- Conclusions

Agenda

- Natural Weathering
- Accelerated Lab Weathering
- Case Study Arwood study
- Correlation
- Conclusions

Weathering - Natural Outdoor

- Provides real-world results
- Results used to validate lab weathering
- 3 standard locations
 - Sub-tropical (Florida)
 - Desert (Arizona)
 - Northern Industrial (Ohio)

Florida

Arizona

Ohio

Outdoor Exposure Angles

Q-TRAC Natural Sunlight Concentrator

- Super-fast results
- Full-spectrum natural sunlight with tracking
- High temperature (temp control available)
- Multiple water spray cycles available
- Nighttime Freezing option
- ASTM G90 and G5722

Summer Sunlight vs. Q-TRAC

~5× UV Irradiance of Natural

Sunlight Concentrating Mirrors

Tracking the Sun

Natural Sunlight Concentrator Cycles

Cycle	Application	Day	Night	
Desert	Inks, Textiles, Building Materials	Sunlight only	Ambient	
Spray (Day/Night)	Plastics, Coatings, Sealants, Building Materials, Wood Sealers	Sunlight Water Spray 8 min/hr	8 min Water Spray, 3 times a night	
Spray (Night)	Plastics, Coatings, Sealants, Building Materials, Roofing	Sunlight only	3 min Water Spray every 15 min inverted position (Wet like Florida)	
Soak/Freeze	Extremely Durable Factory Coated Hardboard, Roofing	SunlightWater Spray 8 min/hr	Water Bath Soak 1 hour Overnight in Freezer -18 °C	

Q-TRAC Freeze-Thaw testing ASTM D5722

- Hardboard test using sunlight concentrator with a soak-freeze-thaw procedure
 - Very realistic very harsh
- Test cycle:
 - ASTM G90 (Cycle 1) during day
 - Immersed in tank of deionized water (21 ± 3 °C , 1 hour)
 - Frozen at (-18 °C, 12 hours)
 - Lab temperature (minimum 1 hour)
 - Returned to the Q-TRAC

We make testing simple.

Q-TRAC Freeze/Thaw Cycle: Good Correlation

Direct Outdoor 365 Days

Q-TRAC Freeze/Thaw 42 Days

Wood B

Agenda

- Natural Weathering
- Accelerated Lab Weathering
- Case Study Arwood study
- Correlation
- Conclusions

Accelerated Laboratory Weathering

- Two main approaches
 - Xenon
- Fluorescent UV
- Both have strengths and weaknesses

Spectral Irradiance

Fluorescent UV, Xenon Arc, and Sunlight

Xenon arc weathering testing

- Full-spectrum sunlight
- Optical filters used to modify spectrum
- Spectrum changes as lamps age
 - Less UV; more visible & IR
- May be moisture-deficient
 - Water spray, not condensing humidity
 - Some may control RH

Xenon Arc Test Chambers

Fluorescent UV

- Shortwave UV portion of spectrum
- Lamp determines spectrum
 - UVA-340 best match to sunlight
- Very stable spectrum
- Hot condensation is best match for natural moisture

QUV Operation

QUV Condensation

- Closest match to natural wetness
- Best way to accelerate water in an laboratory tester
- Elevated temperature
- High O_2 content
- Tester performs distilling you cannot deposit debris on specimens! Water is guaranteed to be clean.

Water Spray

- Ensures that parts get fully saturated
- Creates erosion & thermal shock
 - Purified water is required

UVA-340 Lamps

Agenda

- Natural Weathering
- Accelerated Lab Weathering
- Case Study Arwood study
- Correlation
- Conclusions

Arwood Study

A Reliable Artificial Weathering Test For Wood Coatings

Coatings World; 2003-02-01 Laurence Podgorski (CTBA-FCBA France) Martin Arnold (EMPA Switzerland) Guido Hora (WKI Germany)

Arwood Study Overview

- Goal: determine an artificial accelerated weathering laboratory test suitable for coatings on wood substrates
- Practical Consideration: Use equipment that is cost-effective for small to medium size companies
- Technical Requirement: Test method gives good correlation to natural outdoor weathering
- Publication: Work to serve as basis for a new CEN standard

Arwood Participants

10 Research Institutes

• CTBA-FCBA: The Wood and Furniture Technical Center (France)

• BRE: Building Research Establishment (UK)

• WKI: Society for Applied Research (Germany)

• VTT: Technical Research Center of (Finland)

• Trätek: Institute for Wood Technology Research (Sweden)

• EMPA: Federal Laboratories for Material Testing & Research (Switzerland)

• CC: Coating Consultancy (Denmark)

AITIM: Association of Technical Investigation of the Wood and Cork Industries (Spain)

NIT: National Institute of Technology (Norway)

RUG: University Gent (Belgium)

Arwood Participants

4 Industrial Partners

- Tikkurila Oy (Finland)
- Gori-Dyrup (Denmark)
- Imperial Chemical Industries (United Kingdom)
- Cecil (France)

Test Chamber: Fluorescent UV

Selected by study authors

- Economical
- Consistent spectrum
- Reliable
- Credibility in several industries, particularly steel and plastics

Previous Work

- Several Interlaboratory Comparison tests conducted on different substrates and coatings systems
 - Outdoors
- Artificial exposure with fluorescent UV and water spray

 This presentation reports on the optimized exposure cycles identified for the artificial exposure with fluorescent UV with water spray

Materials

- Substrate: Coated Wood Panel (EN 927-3)
 - Planed and defect-free
 - Pine sapwood (pinus sylvestris)
 - Three replicate samples per coating system
- Coatings: 6 surfaces used, prepared by same lab
 - 2 white paints
 - 1 solvent; 1 water
 - 2 high-build wood stains
 - 1 solvent; 1 water
 - 1 low-build solvent wood stain
 - 1 uncoated

Evaluations

- EN 927-3
 - Cracking
 - Blistering
 - Chalking
 - Color
 - Gloss
- General Appearance
 - Visual inspection rated scale of 0-5 (5 being most severe)
 - Performed by each laboratory (on-site assessment)
 - Final assessment repeated by one technician (common assessment)

Evaluation Test Series

7 QUV exposure cycles

Partner	cycle	Exposure cycle	Duration	Total
			of 1	exposure
WKI	1	[-24h condensation (45°C)] ¹ -(3h UV-340nm then 1h Spray) during 120h -48h stored outside device (ambient conditions)	7 days	time 1860 hours
EMPA	2	-24h condensation (45°C) -(5h UV-340nm then 1h Spray) during 96h	5 days	2033 hours
GORI	3	-24h condensation (45°C) -(5h UV-340nm then 1h Spray) during 144h	7 days	2016 hours
BRE	4	-4h condensation (40°C) -4h UV-351nm	8 hours	2000 hours
Tikkurila and VTT	5	-4h condensation (40°C) -4h UV-340nm	8 hours	1500 hours
СТВА	6	-48h freezing (-20°C) -24h condensation (45°C) -(3h UV-340nm then 1h Spray) during 96h	7 days	2016 hours
Traetek	7	-24h freezing/soaking in water ² -(4h condensation (40°C) thenUV-340nm) during 72 hours -72h Soaking in water	7 days	2016 hours

²⁴h condensation only once at start of exposure 2h freezing + 2h Soaking + 2h freezing + 18 h Soaking

Test Results

Visual Evaluation

T3.13 PF05 T3.13PF22 T3.13PF20 T3.13PF17 T2.13FF40 CTRA TAINFOR T3.13PF03 Control 2 Gori DMPA. YII DEĀTEK

Coating System E

System F (untreated)

Test Results

Cracking Density

Test Results Summary

- UV fluorescent testing with UVA-340 lamps is the best choice
- Extended condensation cycles
- Include water spray to remove surface material
 - Important to maintain spray system
 - Special treatments (freeze or soaking) do not appear to affect weathering
 - Cycles 1, 2, and 3 clearly showed the fastest cracking & gloss loss

Optimized QUV Cycle for Wood Coatings

EN 927-6 and ISO 16053-2

STEP	FUNCTION	Irradiance (W/m²/nm)	Temperature (°C)	Time (hh:mm)
1	Condensation	N/A	45	24:00
2	Subcycle repeat steps 3-4 48x			
3	UV	0.89	60	2:30
4	Spray	N/A	N/A	0:30
5	Final Step - Go to Step 1			

2000 hour test duration

Arwood Conclusions

Accelerated Test Sources of variation

- Wood substrate (e.g. growth ring angle)
- Sample planing
- Room climate (temp. & humidity)
- Water quality
- Equipment maintenance
- Assessment methodology

Considering the high variation of test results obtained with wood samples, the available preliminary results indicate that the reproducibility of the test is "acceptable".

Agenda

Natural Weathering

- © Q-Lab
- Accelerated Lab Weathering
- Case Study Arwood study
- Correlation
- Conclusions

Correlation

- Correlation to natural weathering can be demonstrated by overlaying and visually comparing the time-series curves of selected performance parameters.
 - Cracking density
 - Gloss
- The time axis for natural exposure has been scaled down empirically to give the best overall correspondence for all coating systems.

<u>Correlation</u>

Gloss

- Gloss loss reproduced quite well in lab testing
- High acceleration factor of about 10× (21 months vs ~2 months)
- System C is degraded much more in the artificial exposure than outdoors

Correlation Cracking Density

- Cracking density also reproduced well in lab testing
- System C again degraded much more in the artificial exposure than outdoors

Additional Verification

- 12 coatings were tested with some key components changed
 - UV absorbers removed
 - High or low glass transition temperature etc.
- The original 6 coatings applied to 5 NEW substrates:
 - Beech
 - Oak
 - Spruce
 - Meranti
 - Exterior plywood
- Accelerated Test continued to match outdoor testing very well

Agenda

Natural Weathering

- Accelerated Lab Weathering
- Case Study Arwood study
- Correlation
- **Conclusions**

Conclusions of Arwood

- Optimized cycle proven to be reproducible and repeatable
 - 8 partners tested this cycle with the same 6 coatings
- Results indicate that Optimized Cycle enables:
 - Differentiation between the performance of different coating systems
 - Differentiation between coating performance on different wood substrates
- New international standard published based on this work
 - EN 927-6 (2006)
 - Adopted as ISO 16053-2 (2024)

Lessons for Weathering Testing

- Must use natural outdoor weathering to verify lab weathering
 - Understand location and exposure angle
- Accelerated natural weathering Q-TRAC
 - ASTM D5722
 - Very realistic very aggressive
 - May correlate well with natural outdoor exposures

Conclusions

- Xenon arc accelerated lab weathering
 - Full-spectrum light
 - Might be moisture-deficient
- Fluorescent lab weathering QUV
 - Best match for shortwave UV light
 - Best simulation of natural moisture
 - Proven to work for wood coatings
- Good lab results require natural outdoor weathering
- Develop a testing program that best simulates your field failures

Thank you for your time.

info@q-lab.com

