How to Create Certification Programs That Minimize the Risk of Premature PV Module Failures

Weathering Testing as a Tool to Reduce Risk

Sean Fowler Andy Francis Dave Duecker Bill Tobin

View Recorded Presentation

Q-Lab's New Webinar Series

Today is the second of two new webinars this fall from Q-Lab about specialty weathering testing

All upcoming and archived webinars can be accessed at:

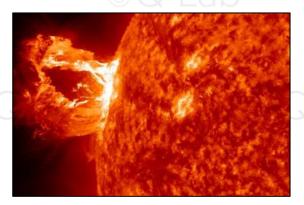
q-lab.com/webinars

Date	Topic
25 Sep	Weathering of wood coatings
02 Oct	Weathering of photovoltaics

Administrative Notes

You'll receive a follow-up email from info@email.q-lab.com with links to a survey, registration for future webinars, and to download the slides

Use the **Q&A feature in Zoom** to ask us questions today!


What is Product Certification?

Product certification or product **qualification** is the process of certifying that a certain product has passed performance tests and quality assurance tests, and meets qualification criteria stipulated in contracts, regulations, or specifications.

--Wikipedia

What is Weathering?

Sunlight

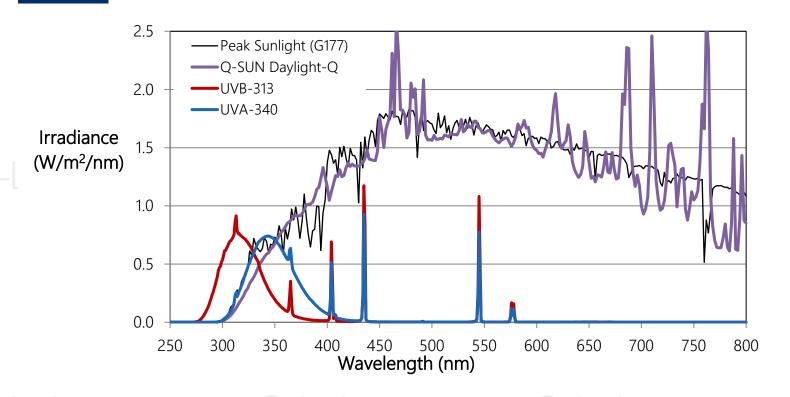
Heat

Moisture

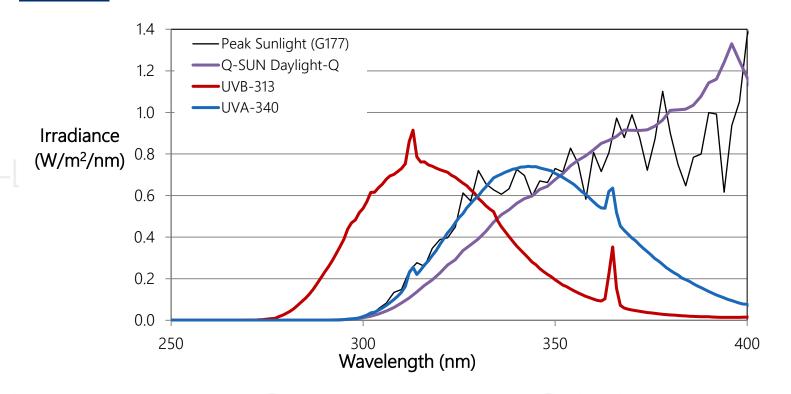
Weathering Technologies

Fluorescent UV

Xenon Arc



Solar Concentrators



Laboratory Light Sources vs. Sunlight

Laboratory Light Sources vs. Sunlight

What is a Useful Weathering Test?

- A test that helps you make decisions better and/or faster.
- Reduces risk of making bad decisions
- Reduces risk of making decisions too slowly

Types of Weathering Tests

- Material Screening
 - Rapid pass/fail test to find gross formulation problems
 - Designed to verify quality in production environment
- Material Validation
 - Relatively long pass/fail test required by contract
 - Designed to qualify a material & reduce commercial risk
- Comparative
 - R&D test to evaluate relative performance
 - Works best with test control materials
 - When done correctly minimizes risk of long-term durability claims

Predictive

- Develop acceleration factor or mathematical model to predict service life
- Requires large amounts of data
- Acceleration factors are unique to a specific material
- Acceleration factors are usually different for various failure modes

Difficulties with "Predictive Weathering Tests"

- Degradation is assumed to be independent of UV dosage rate (reciprocity)
- Photo-oxidation is often limited by oxygen diffusion
 - Recovers during night (dark) time conditions
 - Limits effectiveness of high-irradiance tests

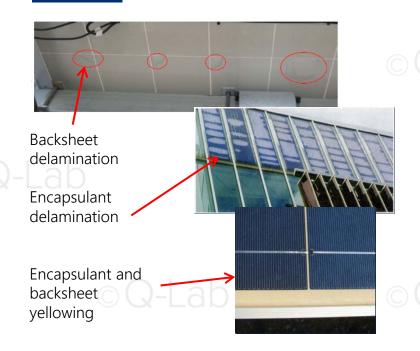
Difficulties with "Predictive Weathering Tests"

- Temperature affects photo-oxidation kinetics differently for various materials (activation energy, E_a, varies by material)
- Hydrolysis
- Can affect and be affected by photo-oxidation
 - Temperature affects kinetics differently by material
- In other words, weathering is too complex for predictive modeling or universal acceleration equations

Now what do we do?

Look to examples of other industries

- Automotive
- Building products (windows, roofing, siding)
- Use weathering tests to reduce risk, not to predict the future



Now what do we do?

- Material Validation Tests (Laboratory)
 - Xenon Arc
 - Fluorescent UV
- Qualification Test Sequence
- Comparative Tests
- Material Screening Tests for Quality Control
- Real World Tests
 - Standardized outdoor exposures
 - Standardized data collection

Material Screening & Validation

- Tests of materials or components for suitability in module construction
- Design "Specimen coupon" tests for:
 - **Backsheets**
 - Sun-facing (though glass) and ground facing (albedo effects)
 - **Encapsulants**
 - Coupon tests allow use of common weathering methods

Photos courtesy of SunPower http://www.nrel.gov/ce/ipvmga task force/pdfs/10-ipvmgaf degraaff sunpower.pdf

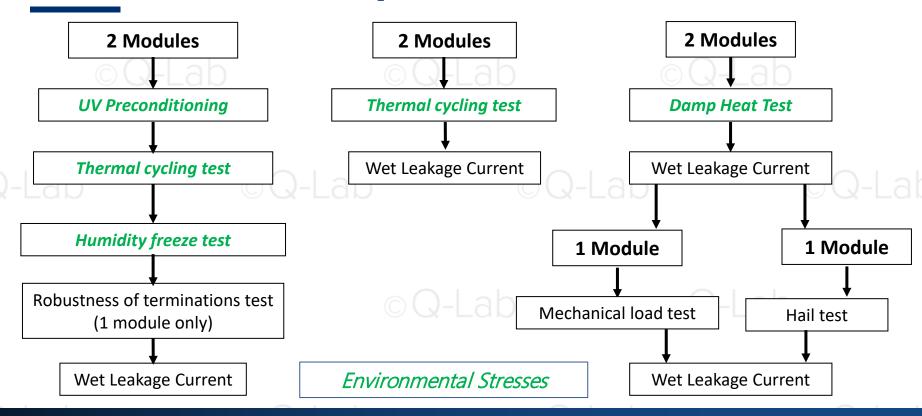
Material Screening & Validation

Fluorescent UV

- Excellent UV match to sunlight
- Up to 3× AM 1.5 sunlight at normal temperature
- Temperature control
- Condensation & Water Spray

Xenon Arc

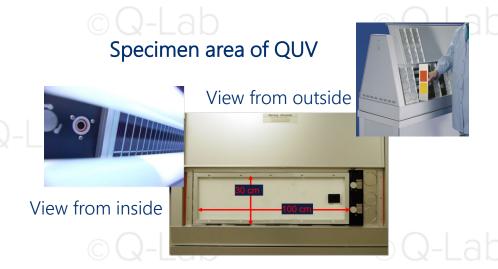
- Excellent match to entire sunlight spectrum
- Temperature control (BP & CAT)
- Controlled RH & Water Spray


Module Qualification Tests

IEC (International Electrotechnical Commission)

- IEC 61215
 - Module test sequence
 - Designed to verify initial quality & prevent failures in 1-3 years (early mortality)
 - Tests address specific failure modes commonly seen
- IEC 61730
 - Safety qualification
 - Address safety over 1-3 years (more on that later)
- Do not address long-term durability

IEC 61215 Test Sequence


Component Qualification Tests

- IEC 62788 Series
 - Test methods and component material test requirements
 - Tests address specific failure modes commonly seen
 - IEC 62788-7-2, Accelerated weathering tests of polymeric materials
- IEC 61730
 - Safety qualification of modules, but...
 - Require component material qualification according to 62788 series
- Do not fully address product lifetime durability

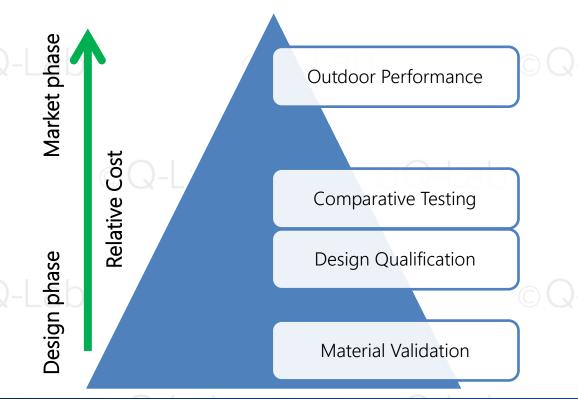
Comparative Tests

- Comparative tests are designed to rank long-term durability of materials or modules but do not provide service life prediction.
- Comparative tests may use specimen coupons or small modules for simultaneous UV, heat, and moisture exposure.
- Full module tests using modified Qualification tests also possible in large chambers.

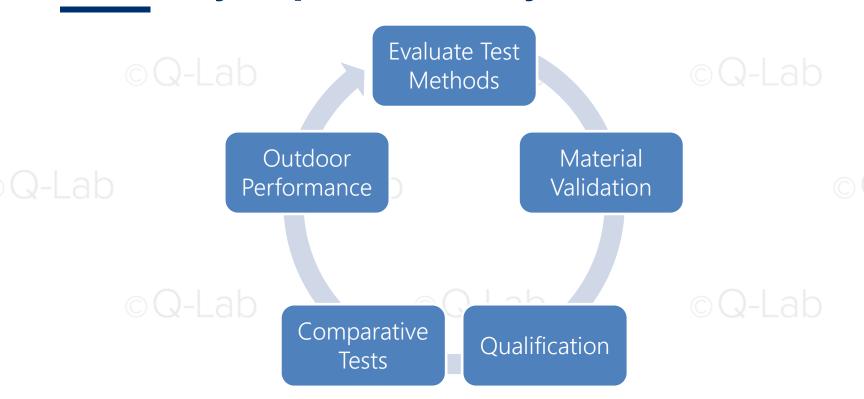
Specimen area of Q-SUN

Standardized Outdoor Exposure Tests

- Module mounting and electrical connectivity
- Data collection
- Evaluation tests
- Visual evaluations
- Put modules on test when qualification tests are started
- Over time, correlate outdoor performance with laboratory test results
- More economical when planned up front


Florida

Arizona



Hierarchy of Durability Testing

Durability Improvement Cycle

Manufacturing Quality Control

How do we accomplish this?

- Standards Community
 - Qualification standards (IEC 61215 & 61730)
 - Material validation (IEC 62788)
 - Quality control (IEC 62941)
 - Extended Stress Testing (National Renewable Energy Laboratory, NREL)
 - Qualification Plus (www.nrel.gov/docs/fy14osti/60950.pdf)
 - IEC TS 63209-1 (modules)
 - IEC TS 63209-2 (polymeric component materials)
- Manufacturers & Suppliers
 - Quality control
 - Material screening prior to production
 - Data collection (outdoor, real world performance)
 - Feed data back into Standards Process (test method improvements, or "sharpening tools")

Improving the Methods

- Today, obtaining data on old modules is very difficult
 - Travel to old sites and measure performance
 - This requires a lot of resources for relatively little information
- Tests done according to existing standards rarely correlated to real-world performance
- Data collection in outdoor environment should be standardized and required in certification program
 - Module and material qualification tests compared to real world performance in the future
 - Standards community responsible for using data to improve methods
 - More economical to do this up front

PV Module Testing Summary

- A variety of tests have been developed to address PV module performance
 - Screening and validation
 - Module qualification
 - Component durability
- Comparative tests along with outdoor testing help establish long-term durability
- 15 years ago, 20-year long-term PV durability seemed like a far-off goal
 - Today, talk is more along 30-40 years
 - PV is one of the fastest-growing energy sectors, and materials and module durability is a major reason why

Thank you for your time.

Questions? info@q-lab.com

