How to Run a Test Comparing Accelerated Test Instruments

Andy Francis Bill Tobin Dave Duecker Sean Fowler

Q-Lab

View Recorded Presentation

Today is the first of four new webinars this summer from Q-Lab on specialized weathering and corrosion topics

All upcoming and archived webinars can be accessed at:

<u>q-lab.com/webinars</u>

Date	Торіс
29 May	How to Perform a Comparison Test
12 Jun	New Developments in Testing Standards
01 Jul	Q-PANEL Standard Substrates
17 Jul	QUALICOAT

QLAE

Administrative Notes

You'll receive a follow-up email from info@email.q-lab.com with links to a survey, registration for future webinars, and to download the slides

Use the **Q&A feature in Zoom** to ask us questions today!

©Q-Lab

©Q-Lab

You are purchasing a new weathering or corrosion test
 instrument for your laboratory

- You are purchasing a new weathering or corrosion test instrument for your laboratory
- You want to ensure that you will get:
 - Same chamber conditions as your existing equipment
 - Same test data (gloss, color, strength) as your existing equipment
 - Same pass / fail results for qualification and QC as your existing equipment
- To gain confidence in this new tester, you want to run a comparison test

The Challenge

©Q-Lab

- Comparison testing is commonly based on two incorrect assumptions:
 - Testing results from one's current chamber will perfectly match other chambers of the same model or family
 - Latest models of a given tester will match the results from legacy models simply because it is the same brand.
- Weathering and corrosion test chambers do not deliver perfect *repeatability*
 - precision of a test on identical material running identical test methods in a single lab
- This makes it more challenging to deliver good *reproducibility*
 - precision of a test on identical material running identical test methods in different labs
- Any tester comparison program must ensure that these parameters are tested for rigorously and fairly

The Approach

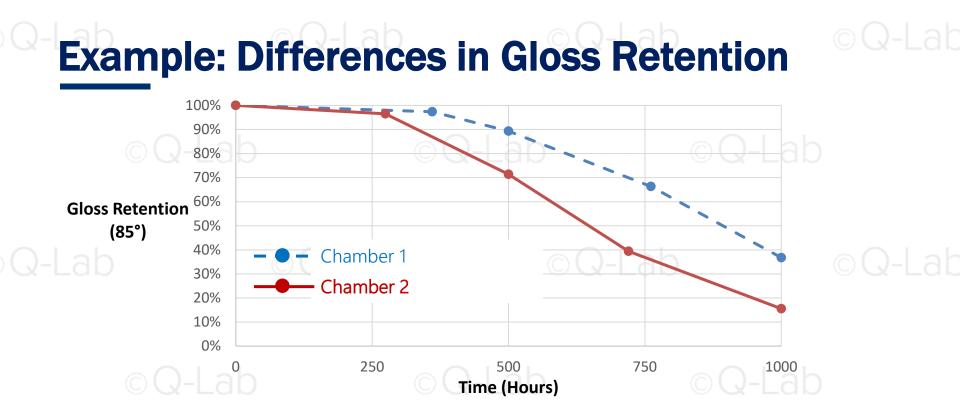
ດΩ-l ah

How to Structure a Scientifically-Valid Comparison Test

- 1. Match test parameters
- 2. Match evaluation procedures
- 3. Agree upon acceptance criteria
- 4. Implement good lab practices

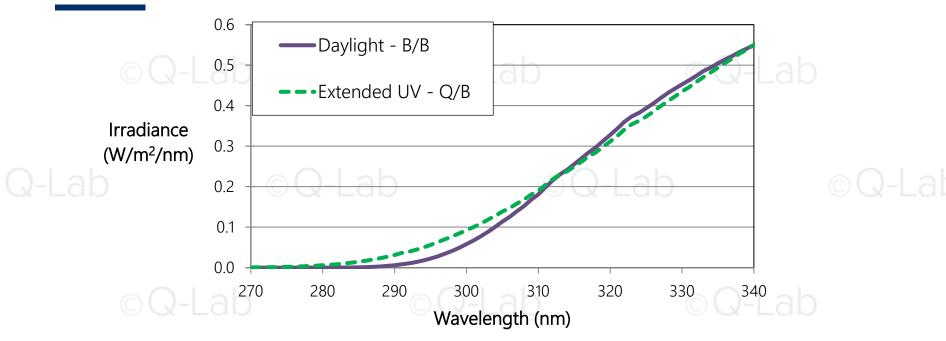
QLAE

Step 1: Match Test Parameters


Run the SAME test in every tester

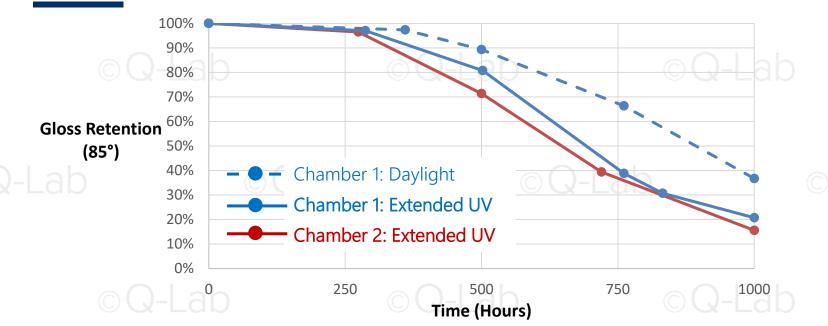
- Light Spectrum
 - Lamp types for UV fluorescent (UVA, UVB)
 - Optical filter for xenon (Extended UV, Daylight, Window)
 - Irradiance control point (340 nm, 420 nm, TUV)
- Temperature
 - Black Panel Type (insulated, uninsulated)
 - Chamber air
- Moisture / electrolyte
 - Humidity, water spray
 - Corrosive or other solution
- Test cycle programming step times and transitions
- Any other subtle or unique test standard details there are LOTS of them

- - ©Q-Lab



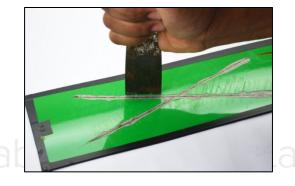
Q

Seemingly identical testers and conditions: very different results


Different Optical Filters, Different Light Spectra

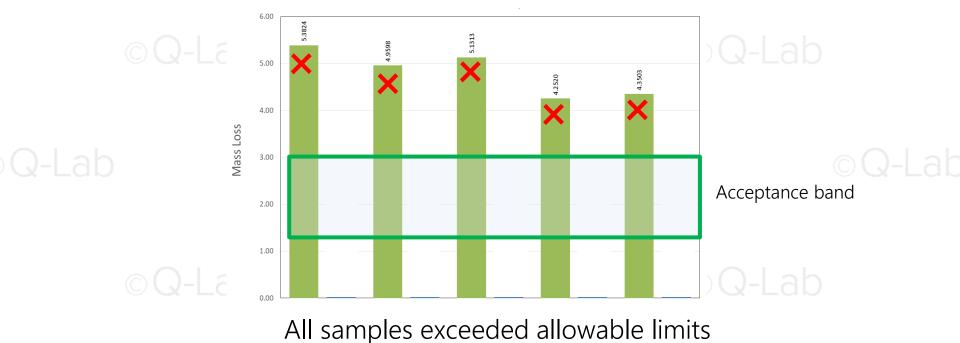
SAE J2527 allows either of these very different optical filters ...

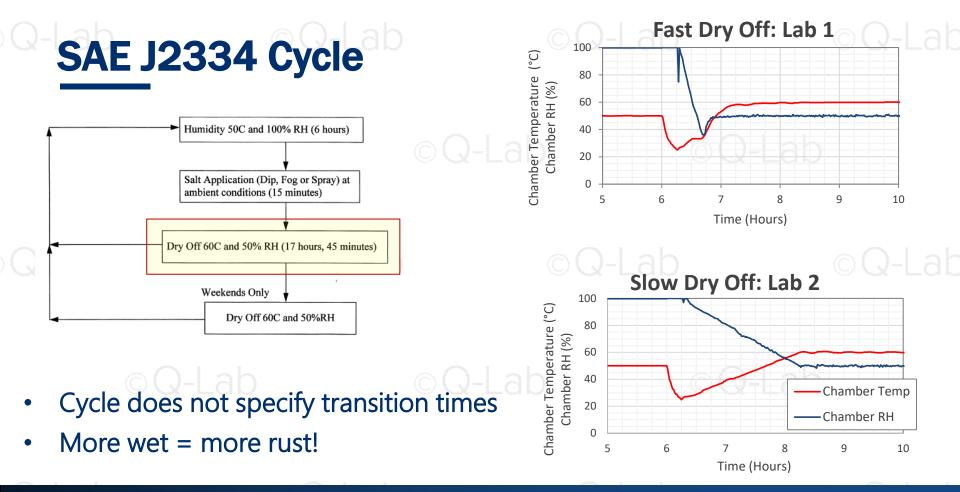
Light spectrum matters!



Gloss results matched much better with identical optical filters *Critical to get the details of the standard correct!*

Example: Differences in Mass Loss


- Coatings manufacturer performing SAE J2334 to evaluate an industrial coating
 - Mass loss coupons used as determining factor
 - Formulation under test was a "known good"
- Differences between labs running "same test"
 - Lab #1 "passed" the formulation
 - Lab #2 "failed" the formulation
 - Why would a good formulation fail?



Mass loss results from Lab 2

What's going on?


Mass loss results – initial with slow dry

Remember this from before?

Mass loss results - with fast dry

Test cycle consistency matters!

- Verify that the test cycle being performed is *as close to exactly the same as possible* in all testers being compared
- Check even seemingly-minor details!
 - Test instruments are very unlikely to give matching results if they aren't performing the same protocol

Step 2: Match Evaluation Procedures

Visual and Instrumental Evaluations

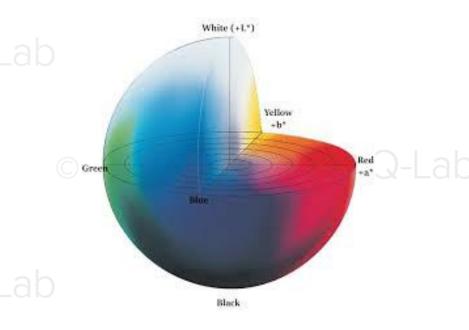
Visual Q-Lab

- Technician reviews specimens and rates the degradation
- Training & verification reduces variability and bias

- Instrumental

- Gives objective rating to a visual change
- Instrumental Color and Instrumental Gloss best examples
- Requires additional inputs for instrument settings
- Results are unbiased, continuous values

We make testing simple

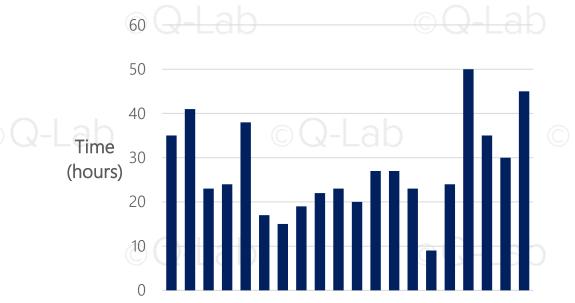


QLAE

Example: Color measurement

- Color space - CIEXYX, HunterLab
- Instrument geometry •

 - 45/0 8° sphere
- Specular component
 - Included, excluded
- Standard illuminant
- Standard observer

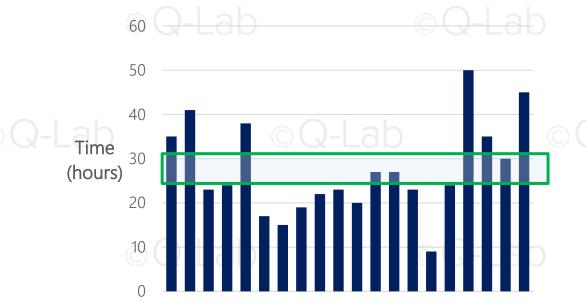

Step 3: Establish Acceptance Criteria

Statistically Significant Data Collection

- Replicates, replicates, replicates
 - Expose enough specimens for at least 3 evaluations
 - More is always better
- Multiple testers
 - At least three reference chambers desired
 - Not always feasible, but rules out an anomalous existing tester's bias
 - A single test in a single tester is less likely to be valid or succeed

Example: Matching a Single Tester

Blue Wool #2 Fading to Grayscale 4


©Q-Lab

- Interlaboratory comparison study from ISO 105-B02
- 20 test chambers of similar manufacture included in this study
- Observe the differences

Example: Matching a Single Tester

Blue Wool #2 Fading to Grayscale 4

How to Run a Comparison Test

26

©Q-Lab

- Interlaboratory comparison study from ISO 105-B02
- 20 test chambers of similar manufacture included in study
- How likely are you to match any given tester with a ±10% variability limit?

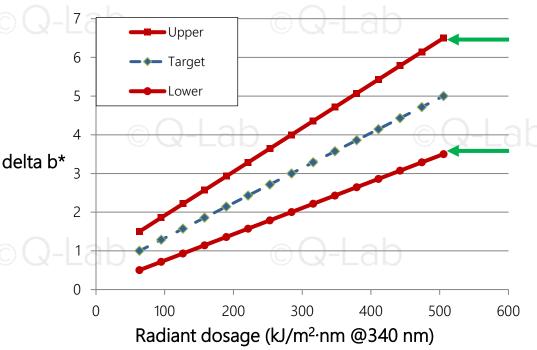
27 | How to Run a Comparison Test

۲

We make testing simple.

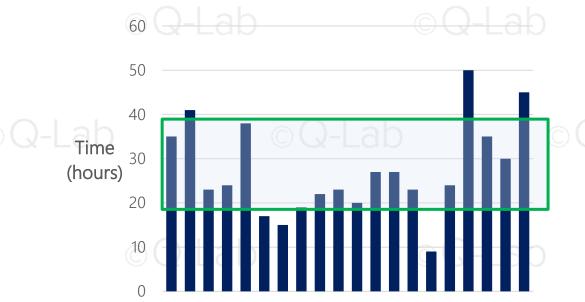
©Q-Lab

SAE Interlaboratory Comparison (ILC)

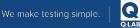

- Also called "Round Robin" or "Ring study"
- ASTM G156 provides framework for qualification of materials
- For Polystyrene "Lot 9" Qualification
 - Multiple accredited Labs conducted the tests
 - Multiple chamber models, designs, architectures were used

SAE Polystyrene Qualification

How good is good enough?


Example: SAE Polystyrene Interlaboratory Comparison

- ILC results established limits
- Limits applied were 2 StDev for a tester to be approved ±30% of average
- After a two week test, Δb of 6.5 and 3.5 are both OK! Would you accept this?


Example: Matching a Single Tester

Blue Wool #2 Fading to Grayscale 4

©Q-Lab

- Interlaboratory comparison study from ISO 105-B02
- 20 test chambers of similar manufacture included in study
- Even with ±30% as in the SAE test, success in a 1:1 comparison isn't a given!

Establishing Acceptance Criteria

- Comparing results from only two of these chambers may suggest exposures are dissimilar.
- Interlaboratory Comparison Studies give some guidance on acceptable variance with well-known reference material
- Even a relatively wide tolerance of 2 standard deviations can make acceptance challenging if just 1 tester of each type is compared
- Critical to set realistic expectations

We make testing simple

Step 4: Implement Good Lab Practices

Consistency in Lab Practices

The Test Instrument is only one Source of Variability

- Material performance & manufacturing variability
- Specimen preparation
- Q-• Conditioning & storage b
 - Handling
 - Laboratory personnel
 - All of these can introduce variability in testing results be sure that they are consistent

Follow Guidance from Test Standards

- ASTM E691 Standard Practice for Conducting an Interlaboratory Study (ILS) to Determine the Precision of a Test Method
 - General information for understanding a test protocol's inherent variability
- International standard ASTM G151 Standard Practice for Exposing Nonmetallic Materials in Accelerated Test Devices that Use Laboratory Light Sources, comments on reproducibility:
 - Assess relative performance, using rank order analysis
 - Use Reference Materials (standard and control) that have known performance

Reference Materials: Standard and Control

©Q-Lab

Reference Materials

©Q-Lab

Standard Reference Materials

- Known performance in test environments
- Not necessarily similar to test specimens
- Performance may not match test specimens
- Verify that lab tester is operating properly

Control Materials

- Similar characteristics to test specimens
- May be your products or competitors'
- Give confidence in lab exposure

Standard Reference Materials

- ASTM G156-24 Standard Practice for Selecting and Characterizing
 Weathering Reference Materials
- Builds confidence in tester's ability to deliver comparable test conditions

QLAE

- Known durability
 Q-Lab
 Q-Lab
- Similar *composition* to test material
- Q-• Similar *degradation mode* to test material Q-Lab
 - Best practice to include both weak- and strong-performing control materials
 - You don't learn much when everything passes or everything fails!

QLAE

©Q-Lab

©Q-Lab

Four guidelines to run a good comparison test

- 1. Match test parameters
 - Test standards often have key details that may not be obvious
- 2. Match details of evaluations
 - Results depend on the technique and the evaluator
- 3. Agree upon acceptance criteria
 - Understand upfront what differences are acceptable based on existing research
- 4. Implement good lab practices
 - Consistent scientific protocols, use of reference materials

Thank you for your time.

Questions? info@q-lab.com

We make testing simple.